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Vibration Isolation

Vibrations due to kinematic and force excitations

Undesirable and inacceptable vibrations in buildings and
rooms with sensitive equipment such as microscopes,
lasers and other vibration sensitive devices are caused by
the following two ways of excitations (Fig. 1, left):

A Kinematic excitation: ground vibrations with
displacement x,, (t) due to traffic, earthquake, wind,

explosions and other loadings excite the sensitive
equipment.

A Force excitation: inertial forces f,, (t) of rotating
machines excite floors and thereby entire buildings.

Assuming very stiff bearings or even the absence of
bearings between ground and sensitive equipment and
between rotating machine and floor/building, respectively,
the disturbing vibrations and forces, respectively, are
transmitted to the sensitive equipment and floor/building
almost without any attenuation. The resulting vibrations
x(t) =x,, (t) and forces f(t) =f,(t) are not acceptable and

may lead to premature material fatigue.

Different kinds of excitations exist (Fig. 2). Rotating
machines often do not generate harmonic but periodic
forces. Punching machines lead to impulse-type force
excitation. Wind (no vortex shedding) and earthquakes lead
to broad band excitations.

without vibration isolation

ground excitation:
floor/ground vibrations inertial forces of rotating
excite sensitive equipment; machines excite floor;
x(t)=xg,{t) for very stiff bearings  f(t)=f,,(t) for very stiff bearings

force excitation:

X=Xay fox
very stiff

=~ T

bearings

Txex l =f,

Fig. 1 — Vibrations in sensitive equipment and structures without (left) and with (right) vibration isolation
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Vibration isolation system

The vibration isolation targets to minimize the
transmissibility of displacement in case of ground
excitation by so-called “passive” isolation and the
transmissibility of force in case of machine induced
vibrations by “active” isolation (Fig. 1, right). Both isolation
systems are identical and consist of a spring packet in

parallel to a dash pot damper.
Single degree-of-freedom system

Equation of motion

The dynamics of the isolated structure are conveniently
analysed by the model of the single degree-of-freedom
system (Fig. 1, right). Its equations of motion for force (1)
and kinematic (2) excitations become

itk x =, (1)
mic (%- )‘(i*ex)+kdvn (x- x,)=0 (2)

with:

A m:mass of system to be isolated in case of ground
excitation and the mass of machine (without accelerated
machine parts) in case of force excitation,

A c:viscous damper coefficient of oil damper,

A kg4 * dynamic spring stiffness of spring packet.

with vibration isolation
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transmitted displacements x(t)  transmitted forces f(t)
reduced by springs (kqyn) reduced by springs (Kqyn)
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Fig. 2 — Harmonic (a), periodic (b), impuls-type (c) and broad band (d) excitations
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Natural frequency

The natural, i.e. undamped frequency in Hertz of the single
degree-of-freedom oscillator is

k
f, =1 [Kam (3)
2p\V m
where the dynamic stiffness kg, describes the stiffness of

the spring element under dynamic loading. For spiral steel
springs kg, is identical to the static stiffness k while kg,

represents a linearized value for elastomer springs. In
practice kg, is usually given in N/mm which leads to the

following approximation

f, [HZ]=\/1000 kg [IN/mml - kg, [N/mm] "
2p mikg] mikg]

Static spring deflection
The static deflection of the spring due to the load of mass
m is (g : gravitational acceleration)

Dho8M_ 8

"k (2pf,)

which shows that Dh can be expressed as function of the
natural frequency only (Fig. 3). For Dh in mm and f, in

(5)

Hertz the following approximation is commonly used
250
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Fig. 3 — Relation between static steel spring deflection and

natural frequency of isolation system
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Damping ratio

The damping ratio z of the oscillator is given by the
viscous damper coefficient ¢ of the oil damper
I S c(2pf,)
Z\jkd\/nm Zm(zpfo) 2k
The expression (7) assumes linear viscous damping of the

passive oil damper which is fulfilled for silicon oil based
dash pot dampers.

(7)

dyn

Free decay response

The free decay response of the damped single degree-of-
freedom oscillator is characterized by a harmonic oscillation
at damped frequency f; and an exponential function

describing the decay of the peaks X (Fig. 4)

x(t) =Xy € (e2p1) cos(2pf, t) (8)
f, =f,41- 2% =1/T, (9)

For oscillators with linear damping the ratio of subsequent
peaks during the free decay response yields the logarithmic
decrement

ax, g

d= Ing}(—n (10)
g n+1 §
from which the damping ratio can be derived as follows
z= d (11)

The approximation z© d/2/p is valid for small z (<10%).
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Fig. &4 — Free decay response of a single degree-of-freedom
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Forced excitation

If the single degree-of-freedom oscillator is excited by the
base displacement or the machine-induced force the single
degree-of-freedom system vibrates at the frequency of
excitation f,, . If the excitation frequency equals the natural

frequency, ie. f,, =f,, resonant vibration with extremely
large amplitudes occur whose magnitude depends on the
damping ratio only.

Amplification function

The displacement amplification of a single degree-of-
freedom system with force excitation is expressed by the
displacement amplitude divided by the static deflection of

the single degree-of-freedom system due to the excitation
force amplitude (Fig. 5)

| X | X 1

= = (12)
|fex/kdvn| Xstatic (1_ |2)2+(22| )2
where | denotes the frequency ratio
I = fou (13)
fO
6 . :
e €= %
¢=10%
5¢ —— §=20% |1
—— ¢=30%
Al ——== §=40%) |
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Fig. 5 — Amplification function for different damping ratios z
of single degree-of-freedom system
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Transfer function

The impact of the machine forces on the forces acting on
the structure is expressed by the absolute transfer function
|a] between transmitted force and excitation force (Fig. 6)

f

f

ex

=F
== (14)

ex

la=

and becomes for harmonic excitation and very small
flexibility, i.e. for infinitely high impedance of the floor

1+(2z1 )

15
1-12) +(221 ) "ol

laf =
The transfer function for kinematic excitation, i.e. base
excitation, for small base vibration amplitudes takes the
same form as (15) (Fig. 6)
X 1+(221 )2

=2 = (16)

X
Xex \{1-12f +(221

laf =

Xex

For small damping ratios (z < 5%) the transfer function |a|

only depends on the frequency ratio |

1
la],s, ° T (z<5%) (17)
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Fig. 6 — Transfer function |a| for different damping ratios z

of isolation system
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Transmissibility

The force transmissibility for force excitation and the
displacement transmissibility for base excitation are
defined by |a| in decibel (dB)

lal, =201log., (al) (18)
Some typical values of [a| and [a|,, are given in Table 1.
Table 1 - Typical values of [a| and [a|g
la| [001 01 05 1 2 10 100
llg | -0 -20 -6 0 6 20 40

The transmissibility function |a|,, (Fig. 7) for different
damping ratios z of the isolation system shows the
following characteristics:

A Amplification, f,, <+/2f,: Transmitted amplitudes are
larger than those of excitation, are larger than without
isolation system and can only be limited by the damping
of the isolation system.

A Attenuation, f. >+/2f,: Transmitted amplitudes are

smaller than those of excitation. Notice that the isolation
system reduces the amplitudes but cannot cancel the
vibrations of the isolated structure.

Same phase and amplitude, f,, <(0.2- 0.3)f;: The

transmitted amplitudes are approx. equal to and approx.
in phase with those of excitation.

Good isolation, | =f,, /f, 2 3: Good isolation is
achieved if the isolation frequency fj, is at least 3 times
lower than the lowest excitation frequency f,, .
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Trade-off behaviour of damping
High values of z reduce resonant amplitudes but lower

the attenuation in the frequency range | >./2,ie. lower a
good roll-off behaviour; the opposite effect is observed for
small values of z . Thus, the optimal design of z strongly

forces in motion



